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Bond lengths in the ternary compounds Ti3SiC2,
Ti3GeC2 and Ti2GeC

M. Y. GAMARNIK, M. W. BARSOUM
Department of Materials Engineering, Drexel University, Philadelphia,
PA 19104, USA

The interatomic distances in the ternary compounds Ti3SiC2, Ti3GeC2 and Ti2GeC have been
determined precisely by comparing the lattice parameters of Ti3GeC2 and Ti2GeC, on the
one hand, and Ti3GeC2 and Ti3SiC2, on the other. The assumptions made were that the
Ti–Ge and Ti–C distances in the Ge-containing phases were identical, and that the
differences in the Ti–Si and Ti–Ge distances in Ti3SiC2 and Ti3GeC2 phases were equal to the
differences in the covalent radii of Si and Ge. While the results clearly show that the TiC
octahedra in the ternary phases are distorted, the extent of that distortion is smaller than
previously reported. The extent of the distortion was found to depend on the type of atoms
surrounding the TiC6 octahedrons; the deformation is larger in the Ge-containing than in
the Si-containing compounds. However, the Ti–C–Ti distances appear to be insensitive to
the nature of the compound. C© 1999 Kluwer Academic Publishers

1. Introduction
Recently, researchers [1, 2] have reported on two related
classes of ternary compounds, Ti3SiC2 and Ti3GeC2,
henceforth referred to as the 312s and the H-phases
(M2BX, where M is a transition metal, and B is a
B-group element and X is either C or N) that are charac-
terized by having the B-group elements exist in close-
packed planes that separate transition carbide or nitride
octahedra (see Fig. 1). A preliminary characterization
of the 312s, Ti2AlC, Ti2AlN and Ti2GeC, indicated that
all these phases are as readily machinable as graphite
and possess hardnesses in the range of 3–5 GPa, ren-
dering them much harder than graphite, but relatively
soft for ceramics. Furthermore, with conductivities in
the range 2–5× 106 Ä−1 m−1, they are roughly two
orders of magnitude more conductive than graphite.
They all exhibit remarkable plasticity at elevated tem-
peratures with yield points that, for the most part, are
substantially higher than the best superalloys avail-
able today. Post-deformation scanning electron micro-
graphs of fractured surfaces and experiments on highly
oriented polycrystals leave little doubt that deforma-
tion is dominated by basal slip, which is operative
even at ambient temperatures. These results, together
with microstructural evidence strongly indicate that
the bonding between the B-group elements and the
transition metal carbide or nitride layers is relatively
weak.

The structure of Ti3SiC2 and its lattice parameter
were first determined in the late 1960s [3]. A hexag-
onal structure was proposed (Fig. 1a) witha = 0.309
nm andc = 1.766 nm. The atomic positions of the Ti
atoms correspond to the 2a, Si to the 2b and C to the 4f
Wyckoff positions of the space groupD4

6h− P63/mmc
(space group number 194, [4]) Since that time the lattice

parameters have been measured on chemical vapour
deposition (CVD) samples [5], on single crystals [6],
and by convergent beam electron diffraction in a trans-
mission electron microscope [7], which independently
confirmed the X-ray diffraction information. The result
of these studies are summarized in Table I, and are in
general agreement with the original values.

As far as we are aware, the only paper in the literature
that deals with the structure of Ti3GeC2 is [8], which
showed that it is isostructural with Ti3SiC2, with a =
0.306 nm andc = 1.766 nm. Similarly, to the best of
our knowledge, the lattice parameters of Ti2GeC, the
structure of which is shown schematically in Fig. 1b,
have only been determined once [9], and are listed in
Table I.

In order to solve for the interatomic distances,
the z-parameter, defined as the ratio ofdC,312/c (see
Fig. 1a), has to be known. Jeitschko and Nowotny
[3] report a value of 0.1357 for Ti3SiC2. As far as
we are awarez was never determined for Ti3GeC2.
For Ti2GeC, the reportedz value is 0.086 (for the H-
phases thez-parameter is defined as:z= dc/2c, where
dc is defined in Fig. 1b, andc is the lattice param-
eter). The method used to arrive at these values was
by a minimization, through trial and error, of the dif-
ferences between the measured and calculated inten-
sities of the X-ray reflections for variousz-parameter
values. Unfortunately, this technique is quite inaccu-
rate and can result in significant errors because of pre-
ferred orientation and other systemic errors in mea-
suring and quantifying the intensities of the X-ray
reflections.

Therefore, the aim of this investigation is to deter-
mine the bond lengths in the 312 and the H-phase with
higher accuracy, than previously reported.
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TABLE I Lattice parameters of the ternary compounds Ti3SiC2, Ti3GeC2 and Ti2GeC determined in this work and those previously reported

Compound a (nm) c (nm) c/a Reference

Ti3SiC2 0.306 65± 0.000 05 1.7671± 0.0003 5.7625
0.3068± 0.0002 1.7669± 0.0006 5.75 [3]
0.3066 1.7646 5.755 [6]
0.3064 1.765 5.76 [5]
0.307 1.769 5.762 [7]

Ti3GeC2 0.308 74± 0.000 05 1.7806± 0.0003 5.767
0.3077 1.776 5.772 [8]

Ti2GeC 0.308 08± 0.000 06 1.2929± 0.0003 4.197
0.3079 1.293 4.199 [9]

(a) (b)

Figure 1 Unit cell of (a) the 312 phases and (b) the H-phases.

2. Experimental procedure
2.1. Method of determination of interatomic

distances
As shown in Fig. 1a, b, thec-axis in the 312 and
H-phases can be expressed by linear combinations of
various distances along thec-axis. From the figure it is
obvious that

c312 = 4dC,312 + 2dSi/Ge,312

cH = 2dC,H + 2dGe,H
(1)

wheredC,312 is double the distance of the interplanar
spacing between hexagonal nets of Ti and C atoms and
dSi/Ge,312 is double the interplanar spacing between the
close-packed planes of Ti and Si or Ge in the 312 phases.
dC,H anddGe,H are the corresponding distances in the
H-phase (Fig. 1b). Once these distances are known,
together with the lattice parameters, all the interatomic
distances can be determined.

The relationships between the interatomic distances
and the lattice parameters in the 312 phases are

rTiI−TiI = a

r 312
Ti−Si/Ge =

(
a2

312

3
+ d2

Si/Ge,312

4

)1/2

r 312
TiI−TiII =

(
a2

312

3
+ d2

C,312

)1/2

(2)

r 312
Ti−C−Ti =

(
4a2

312

3
+ d2

C,312

)1/2

wherer 312
Ti−Si/Ge, r 312

TiI−TiI
, r 312

TiI−TiII
and r 312

Ti−C−Ti are, re-
spectively, the interatomic distances between the Ti and
Si or Ge atoms, the Ti atoms within the close-packed
planes, the Ti atoms not in the close-packed planes and
double the Ti–C distance. All distances are defined in
Fig. 1a. Note that an identical set of equations applies
to Ti2GeC.

Focusing on Ti3GeC2 and Ti2GeC and rearranging
Equation 1, one obtains the following expressions

dC,312 = c312 − cH

2
− (dC,312 − dC,H)

− (dGe,312 − dGe,H)
(3)

dGe,312 = cH − c312

2
+ 2(dC,312 − dC,H)

+ 2(dGe,312 − dGe,H)

where 312 in this case refers to Ti3GeC2.
The Ti–C and Ti–Ge clusters in the H and 312 phases

are identical and thus it is not unreasonable to assume
that the Ti–C and Ti–Ge interatomic distances would
be almost identical. Consequently, the followings as-
sumptions are made

r 312
Ti−Ge = r H

Ti−Ge

and (4)
r 312

Ti−C = r H
Ti−C

170



                  
P1: BKR/KGI P2: BKR 641-97 January 11, 1999 10:35

TABLE I I Interatomic distances (nanometres) in the ternary compounds Ti3SiC2, Ti3GeC2 and Ti2GeC determined in this work and those reported
by [3] and [9]. For comparison’s sake the lattice parameters of TiC0.66 [3] are also included

Ti3SiC2 Ti2GeC
TiC0.66 [13] This work [3] Ti3GeC2 This work [9]

rTiI−TiI 0.3055 0.306 65 0.3068 0.308 74 0.308 08 0.3079
rTiI−TiII 0.3055 0.304 54 0.2971 0.303 49 0.304 17 0.284 76
rTi−C−Ti 0.4320 0.432 18 0.427 0.432 93 0.432 93 0.4195
rTi−Si/Ge 0.262 63 0.2696 0.267 54 0.267 54 0.2768
dC 0.2494 0.247 79 0.2385 0.245 63 0.246 74 0.222 37
dSi/Ge 0.387 97 0.4065 0.399 03 0.399 71 0.4241
z-parameter 0.014 02 0.0135 0.009 53 0.0086

wherer 312
Ti−Ge andr 312

Ti−C are, respectively, the Ti–Ge and
Ti–C distances in the 312 phase andr H

Ti−Ge andr H
Ti−C

the corresponding distances in the H phase. Combining
Equations 2 and 4 and rearranging terms one obtains

1dC = dC,312 − dC,H = 4

3(dC,312 + dC,H)

(
a2

H − a2
312

)
1dGe = dGe,312 − dGe,H (5)

= 4

3(dGe,312 + dGe,H)

(
a2

H − a2
312

)
Between Equations 3 and 5 there are four unknowns
(dC,312, dC,H, dGe,H, dGe,312) and four equations. A
closed form solution is easily arrived at by the method
of successive approximations. The solution converges
quite rapidly if the starting value fordC,H is taken to
be (c312− cH)/2 while that fordGe,312 = cH − 0.5c312.
The results are listed in Table II.

Silicon does not form an H-phase; consequently, this
technique cannot be used to solve for the interatomic
distances in Ti3SiC2. Instead the interatomic distances
are determined by comparing the two 312 structures.
The basic assumption here is that the differences be-
tween the Ti–Si and Ti–Ge distances are due to the dif-
ferences in atomic radii. In other words the following
assumption is made

rTi−Si = rTi−Ge − (rGe − rSi) (6)

whererGe and rSi are the atomic radii of the Ge and
Si atoms, respectively. These values in turn can be
accurately determined from precise lattice parameter
measurements on Si and Ge. The values used here are
rGe = 0.122 49 nm andrSi = 0.117 58 nm, and the
difference is thus 0.004 91 nm. Using this valuerTi−Si
is calculated from Equation 6 anddSi,312 is calculated
from one of the expressions in Equation 2, namely

dSi,312 = 2

(
r 2

Ti−Si −
a2

Si,312

3

)1/2

Similarly dC,312 can be calculated from

dC,312 = cSi,312 − 2dSi,312

4

2.2. Materials and methods
The processing details are discussed elsewhere [1, 2].
In summary,−325 mesh Ti powders (99% purity) were
mixed with either SiC and graphite, or Ge (−325 mesh,
99.99% purity, Johnson Matthey) in the proper molar
ratios. The powders were then cold pressed to form a
green body that was placed in a vacuum hot press and
subjected to the following temperature–pressure cycles:

1. Ti3SiC2: heating to 1600◦C at 10◦C min−1 and
held at that temperature for 4 h under a pressure of
40 MPa before furnace cooling.

2. Ti3GeC2: heating at 5◦C min−1 to 900◦C, soak at
that temperature for 1 h, further heated at the same rate
to 1200◦C for 4 h and then heated further to 1500◦C
and held at that temperature for an additional 4 h before
furnace cooling. The load was ramped at 22 kN h−1 up
to a maximum load that corresponded to a pressure of
45 MPa. Both the temperature and pressure ramps were
started simultaneously.

3. Ti2GeC: heating at 5◦C min−1 to 900◦C, soak at
that temperature for 1 h, further heated at the same rate
to 1200◦C for 4 h and then slowly cooled. The pressure
cycle was identical to that used for Ti3GeC2.

X-ray diffraction of powdered samples that were ma-
chined out of the centre of the densified body were
X-rayed using CuKα radiation and a Ni-filter. The lat-
tice parameters were determined from the positions
of the peaks using a precise, self-correcting method
[10, 11]. This method accounts for goniometer aberra-
tions, especially the shift,s, from the goniometer axis
of the sample reflecting plane. Using this method the
shift, s, is included as an unknown. Other aberrations,
i.e. the zero position of the detector, the horizontal and
vertical divergences of the X-ray beam, etc., are in-
cluded in the free term of the Bragg equations and have
been estimated by well known formulae, see for ex-
ample [12]. The additional Bragg equation needed to
determines is provided by a correcting reflection in the
X-ray patterns–the Bragg reflection used here is one
that occurs at small angles (approximately 10–20◦) to
obtain higher accuracy in the determination of thesval-
ues, because the reflections at small Bragg angles are
more sensitive to shifts ins than the reflections at higher
angles. The latter were used for the determination of the
lattice parameters.
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The lattice parameters were determined from the po-
sitions of the maxima of the reflections. The positions of
the 1 1 0 and 0 0 1 6reflections were used to determine
the lattice parameters for the 3 1 2 phases, while the
1 1 0 and 0 0 1 2peaks were used for the H-phase. The
0 0 2 and 0 0 1 6reflections were used as the correct-
ing reflections for the 312s, while the 0 0 2 and0 0 1 2
were used for the Ti2GeC. The angles at which these
reflections occurred were used to account for the shift
in s [10, 11].

The results are listed in Table I, and compared with
other reported values. With the exception of the lattice
parameters of Ti3GeC2, which differ by about 0.3%
from the only other reported value, they are in excellent
agreement.

3. Results and discussion
Using the values of the lattice parameters measured
here, and the procedure outlined above, the interatomic
distances were solved for and the results are listed in
Table II, together with values of the lattice parameters
for TiC0.66 taken from [13]. TiC0.66 was used instead
of TiC because the ratio of C to Ti in the 312 phase is
0.66. For comparison’s sake the interatomic distances
reported in [3] for Ti3SiC2 and in [9] for Ti2GeC are
also included.

Before discussing the results it is important to discuss
briefly the assumptions made in Equations 4 and 6. In
the first assumption, Equation 4, it is assumed that the
Ti–C and Ti–Ge distances are identical in the Ti3GeC2
and Ti2GeC structures. Given that both distances reflect
the same cluster of atoms, this is not an unreasonable
assumption. The second assumption is that the differ-
ences in the Ti–Si and Ti–Ge distances are equal to the
differences in the radii of Si and Ge, which again is
quite plausible. It is worth noting that we are not claim-
ing that the radii in the ternaries are equal to those in
the covalent crystal, but rather the much less egregious
assumption that the differences in radii in the ternar-
ies are due to the differences in radii in the covalent
crystals. In other words, any distortion that is occurring
to the atoms as a result of their being in the octahe-
dral arrangement of the Ti atoms will occur equally or
proportionally for both Si and Ge.

A perusal of Table II clearly indicates that the in-
teratomic distances determined in this work and those
reported earlier are quite different. The differences are
traceable to the value of thez-parameter; in the pre-
vious work z is significantly smaller than the values
determined here. As discussed below, one of the rami-
fications of choosing a smallerz-parameter is that the
Ti–C–Ti distances one calculates for the ternary com-
pounds become significantly shorter than the corre-
sponding distances in TiCx. The Ti–C–Ti distance in
TiCx is a weak function ofx (it varies from 4.33 to
4.32, i.e. a 0.2% change, asx changes from 1 to 0.66
[13]), consequently it is unreasonable to assume that
that distance should change that dramatically when go-
ing from TiCx to the ternary compounds. The fact that
the Ti–C–Ti distances calculated in this work and listed
in Table II, are in such good agreement with the Ti–C–Ti

distance in TiC0.66 is indirect evidence for the sound-
ness of our method and assumptions.

This distortion in the Ti–C–Ti distances can be fur-
ther quantified as follows. The functional dependence
of the changes in therTi−C−Ti distances in the ternaries
normalized with respect to TiC0.66 on,εTiI−TiI , defined
as

εTiI−TiI (%) = r 312
TiI−TiI

− r TiC
TiI−TiI

r TiC
TiI−TiI

× 100

is plotted in Fig. 2a, together with the corresponding
results of Nowotny and coworkers [3, 9]. The weak
dependence ofrTi−C−Ti on the TiI–TiI distances, i.e.a

(a)

(b)

Figure 2 Dependence of (a) the relative change in the Ti–C–Ti inter-
atomic distances on the relative changes in the TiI–TiI distances in the
ternary compounds normalized with respect to Ti–C0.66 (see text for de-
tails), and (b) the distortion of the TiC octahedra in the ternary phases
on the relative changes in the TiI–TiI distances normalized with respect
to TiC0.66.
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parameter, when compared with the previous results
is apparent from the figure. Furthermore our results
appear to extrapolate to the origin as they should. The
largest distortion of about 0.2% occurs in Ti3GeC2, and
is less for the other two phases, and significantly smaller
than the previous results.

In addition to affecting the Ti–C–Ti distances in the
ternaries slightly as compared with TiC, the existence
of Si hexagonal layers in the Ti3SiC2 structure, and of
Ge hexagonal layers in the Ti3GeC2 and the Ti2GeC
structures leads to the anisotropic deformation of the
regular CTi6 octahedrons that are present in TiCx. This
distortion occurs by expansion along thea-axis and
contraction along thec-axis, and can be quantified by
defining the following function

1(%) = rTiI−TiII − rTiI−TiI

rTiI−TiI
× 100

When plotted versusεTiI−TiI (Fig. 2b), and once again
compared with previous results [3, 9] the differences
become apparent. Based on our calculations the maxi-
mum distortion of less than 2% occurs in Ti3GeC2. The
corresponding distortion in Ti2GeC reported earlier is
greater than 7% and extrapolates to a value greater than
9% for Ti3GeC2. In both cases, however, the defor-
mation of the CTi6 octahedrons in the Ge compounds
Ti3GeC2 and Ti2GeC is larger than in the Si compound
Ti3SiC2.

Based on our calculations, the changes in Ti–C–Ti
distances realized by the deformation of CTi6 octa-
hedrons, are smaller than the changes in the Ti–Ti
distances. This implies that the distortion is realized
mostly by bond rotations, which have to be energeti-
cally preferable to changing the equilibrium distances
between the Ti and C. A significant increase in the inter-
atomic distances would lead necessarily to an increase
in the pair interaction potential, which in turn would re-
sult in a significant increase in the crystal energy. Bond
rotations on the other hand should not lead to signifi-
cant increases in the crystal energy because they would
not greatly affect the pair interaction potential. Further-
more, the TiI–TiII distances in the ternary compounds
are still larger than the Ti–Ti distances in metallic Ti
(0.291 nm).

It is worth mentioning that this tendency of the octa-
hedra to distort has been observed in X-ray diffraction
studies of annealed substoichiometric TiCx. TiC0.67 that
was annealed for a month at 730◦C showed a slight
rhombohedral distortion with a rhombohedral angle
α = 90.2◦, with the lattice being compressed along the
(1 1 1) directions [14]. The same group has also shown
that ordering occurs in TiC whenx < 0.67 and the tem-
peratureT < 1000 K. Two forms of order have been ob-
served: a cubicFd3m type in which the (1 1 1) planes
are alternately one-quarter and three-quarters filled, and
the R−

3 m or CuPt ordered structure where the close-
packed planes are alternately full or empty. Theoretical
calculations have shown that the CuPt structure had a
slight energy advantage [15]. The similarity between
the CuPt-type structure and Ti2GeC would lend cre-
dence to that conclusion.

Finally, it is worth speculating on the origin of the
observed distortion. At this time it is felt that the dis-
tortion could result from an electron transfer from in
between the Si–Ti close-packed planes into thed–d
bonds of the TiI–TiII atoms. Such a charge transfer
would result in the observed distortion as well as result
in a weakening of the Ti–Si bonds. It is this weaken-
ing of the bonds that allows the planes to shear easily
with respect to each other and which would account
for most of their mechanical properties, such as rela-
tively low hardnesses, machinability and a deformation
mechanism that is dominated by basal slip [1, 2]. It is
acknowledged here that the exact details of the elec-
tronic structure and electron density distributions can-
not be answered without recourse to more sophisticated
numerical models. However, the results obtained in this
work should be accounted for in any successful model.

4. Conclusions
1. The bond lengths in the ternary compounds

Ti3SiC2, Ti3GeC2 and Ti2GeC were determined with
precision using a method of comparison of the lattice
parameters of the structures containing the same atomic
layers.

2. The results obtained show while anisotropic de-
formation, i.e. expansion along thea-axis and contrac-
tion along thec-axis, of the CTi6 octahedrons occurs
in ternary compounds, it is significantly smaller than
previously believed.

3. The Ti–C–Ti distances calculated for the ternary
compounds are comparable with those in TiCx. This in-
dicates that the distortion is accommodated by rotation
of Ti–C bonds in the CTi6 octahedrons rather than their
shrinking.

4. The results obtained indicate the difference in
anisotropic deformation of the CTi6 octahedrons de-
pending on the types of atoms located outside the CTi6
octahedrons. The deformation of the CTi6 octahedrons
is largest in Ti3GeC2 and smallest for Ti3SiC2.

Note added in proof
Since this paper was submitted, the following two pa-
pers on the structure of Ti3SiC2 determined by Reitveld
analysis of neutron data, have been accepted for pub-
lication in J. Phys. Chem. Sol.; i) E. H. Kisi, J. A. A.
Crossley, S. Kyhra and M. W. Barsoum, and ii) M. W.
Barsoum, T. El-Raghy, C. J. Rawn, W. D. Porter, H.
Wang, E. A. Payzant and C. R. Hubbard. Both pa-
pers confirm the distances calculated by Jeitchko and
Nowotny for Ti3SiC2. For that structure, the difference
between our data and the neutron diffraction data is of
order of the estimated accuracy of the neutron diffrac-
tion data.
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